


# Rheumatoid Arthritis: Executing Exercise

By Ben Too

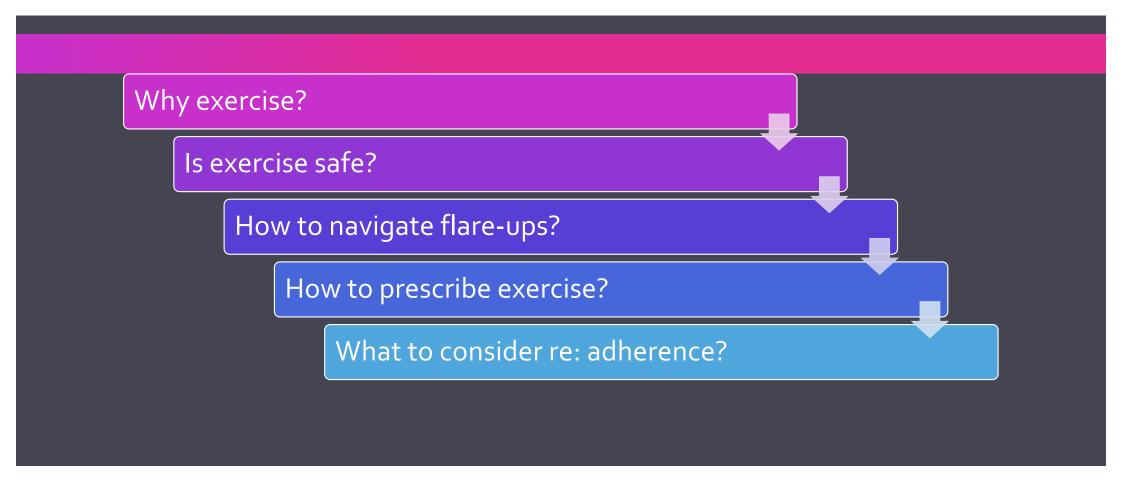
APAM Physiotherapist MSK Physio Master's candidate Email: b.too@uq.net.au



# WHAT DO WE KNOW?

RA is a multi-system, destructive, joint disease.

RA features pain, fatigue, "flares" & poorer health.

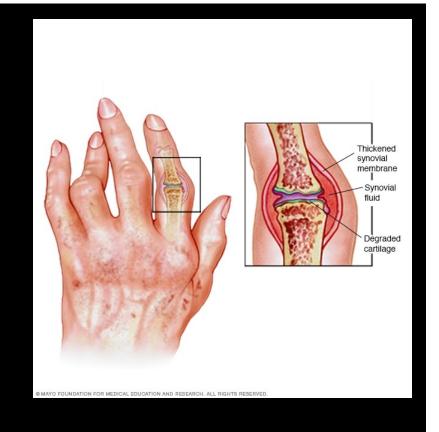

Exercise is recommended.

Exercise is challenging.

(Li & Wang 2022; Joseph et al,. 2023)



### STIMULUS QUESTIONS:






#### OVERALL ROLE OF MANAGEMENT

- DMARDS & Biological agents)
- Why exercise?

| Reduce              | Minimise              | Improve                      |
|---------------------|-----------------------|------------------------------|
| Disease<br>activity | Structural<br>damage. | Function Symptoms CV health. |



(Rausch et al,. 2018; Metsios & Kitas 2018 Marthe et al,,. 2021)





Cochrane Database Syst Rev. 2009 Oct; 2009(4): CD006853.

Published online 2009 Oct 7. doi: 10.1002/14651858.CD006853.pub2

PMCID: PMC6769170 PMID: <u>19821388</u>

Dynamic exercise programs (aerobic capacity and/or muscle strength training) in patients with rheumatoid arthritis

Monitoring Editor: Emalie Hurkmans,<sup>™</sup> Florus J van der Giesen, Thea PM Vliet Vlieland, Jan Schoones, Els CHM Van den Ende, and Cochrane Musculoskeletal Group

- Efficacy & safety of short/long term dynamic exercise (aerobic and/or strength)
- Either land or water-based.
- 8 RCTs
- Short-term land based aerobic improves aerobic capacity
- Short & Long-term land aerobic and RT improves aerobic capacity and strength.
- Inconclusive superiority for land vs water.
- Long term adherence issues.



### META-ANALYSES: RESISTANCE

#### **Resistance Exercise:**

- 1) Baillet et al (2012):
- RT for QOL, STR, ESR
- 2) Wen et al (2022):
- RT for ESR + DAS + 5oft walk

#### **Aerobic Exercise**

- 3) Baillet et al (2010):
- QOL, HAQ score.
- 4) Ye et al (2022):
- Function, pain, aerobic cap, STS.



## IS EXERCISE SAFE?



# DOES EXERCISE AGGRAVATE RA?

#### Exercise does not aggravate:

- Disease activity
- Severity of pain
- Swollen joints
- Joint stiffness
- May reduce disease activity or severity.

(Li Z & Wang 2022)



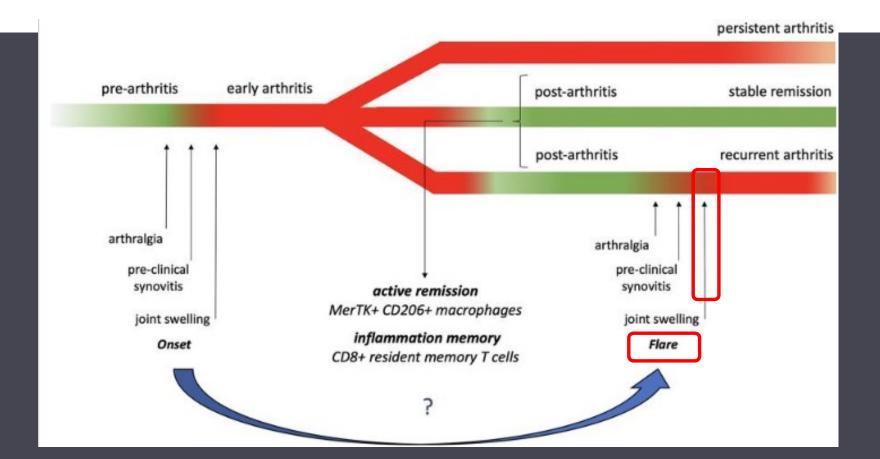
#### **ACUTE POST-EXERCISE OUTCOMES**

Nil aggravation of pain post-exercise compared to controls.

Post-exercise inflammatory markers no different to controls.

(Balchin et al,. 2022)




#### **ACUTE POST-EXERCISE OUTCOMES**

|                          | Land<br>N = 33 | Water<br>N = 33 | Controls<br>N = 34 | P       |
|--------------------------|----------------|-----------------|--------------------|---------|
| Adverse events           | 14 (42.4%)     | 3 (9.1%)        | 33 (97.1%)         | < 0.001 |
| Worse due to pain        | 8 (24.2%)      | 0               | 21 (61.8%)         | 0.03    |
| or joint swelling        |                |                 |                    |         |
| Depression               | 0              | 0               | 3 (8.8%)           | 0.1     |
| Morning stiffness        | 1 (3%)         | 0               | 0                  | 0.2     |
| Low back pain            | 1 (3%)         | 1 (3%)          | 4 (11.8%)          | 0.2     |
| Nonrestorative sleep     | 0              | 0               | 5 (14.7%)          | 0.3     |
| Hypertension             | 3 (9.1%)       | 1 (3%)          | 0                  | 0.4     |
| Influenza                | 0              | 1 (3%)          | 0                  | 0.1     |
| Serious adverse events   |                |                 |                    |         |
| Cerebrovascular accident | 1 (3%)         | 0               | 0                  | 0.1     |
| Death                    | 1 (3%)         | 0               | 0                  | 0.6     |

(Siqueira et al,. 2017)

## THE UNIVERSITY OF QUEENSLAND AUSTRALIA

#### FLARE-UPS



(Bozalla-Cassione et al,. 2022; Myasoedova et al,. 2016; Jacquemin et al,. 2017)

### **FLAREUPS**



**Educate** support & Collaborate.



Liaise
with
rheum/medical
team.



Exercise
unaffected joints
(tolerable
intensity).



**Encourage** some PA



**Limit**high loads to
affected joints



Have
A plan to get
back into
exercise

(Metsios 2018; Bozalla-Cassione et al,. 2022; Myasoedova et al,. 2016)



# HOW DO PRESCRIBE EXERCISE?



#### LIMITATIONS IN THE RESEARCH

- Combining exercise methods ideal.
- Any exercise is better than none.
- Unknown dose-response.
- Poor reporting of exercise principles
- Difficult extrapolate to severe RA.

Review > J Adv Nurs. 2021 Feb;77(2):506-522. doi: 10.1111/jan.14574. Epub 2020 Nov 11.

The effect of physical exercise on rheumatoid arthritis: An overview of systematic reviews and meta-analysis

Huiling Hu <sup>1</sup>, Angi Xu <sup>1</sup>, Chao Gao <sup>2</sup>, Zhenging Wang <sup>3</sup>, Xue Wu <sup>1 4</sup>

> Mediterr J Rheumatol. 2021 Dec 27;32(4):378-385. doi: 10.31138/mjr.32.4.378. eCollection 2021 Dec.

Position Statement on Exercise Dosage in Rheumatic and Musculoskeletal Diseases: The Role of the IMPACT-RMD Toolkit

George S Metsios 1 2 3, Nina Brodin 4, Thea P M Vliet Vlieland 5, Cornelia H M Van den Ende 6,



#### LIMITATIONS

#### Boniface et al's SR (2020):

- RCTs did not report pilot studies, or evidence to underpin exercise dose.
- 97% of included RCTs provided incomplete Rx descriptions
- Key dose parameters were incomplete.
- The SARAH trial was one that did have a pilot, and did have use the same dosage in their main trial. (Lamb et al,. 2015)



#### HAND EXERCISES: SARAHTRIAL

(Lamb et al,. 2015; Heine et al,. 2012; Esther et al,. 2017)

- Hand exercise (n=246) was superior to usual care (n=244) in hand function + grip strength.
- No adverse events.

|          | Exercise                  | Frequency | Sets  | Repetitions | Initial Hold                                       |   |
|----------|---------------------------|-----------|-------|-------------|----------------------------------------------------|---|
| Mobility | MCP flexion               |           |       | x 5         | 5 seconds<br>(where required)                      |   |
|          | Tendon gliding            |           |       |             |                                                    |   |
|          | Finger radial walking     |           | 1     |             |                                                    |   |
|          | Wrist circumduction       | Daily     |       |             |                                                    |   |
|          | Finger abduction          |           |       |             |                                                    |   |
|          | Hand-behind-head          |           |       |             |                                                    |   |
|          | Hand-behind-back          |           |       |             |                                                    |   |
| Strength | Eccentric wrist extension | Daily     |       |             |                                                    |   |
|          | Gross grip                |           |       | x 10        |                                                    |   |
|          | Finger adduction          |           | Daily | 1           | (minimum 8 repetitions;<br>maximum 12 repetitions) | - |
|          | Pinch grip                |           |       |             |                                                    |   |





MCP flexion



Finger abduction



Tendon gliding



Wrist circumduction



Combined shoulder & elbow ROM



Radial walking

## SARAH: MOBILITY









wrist extension

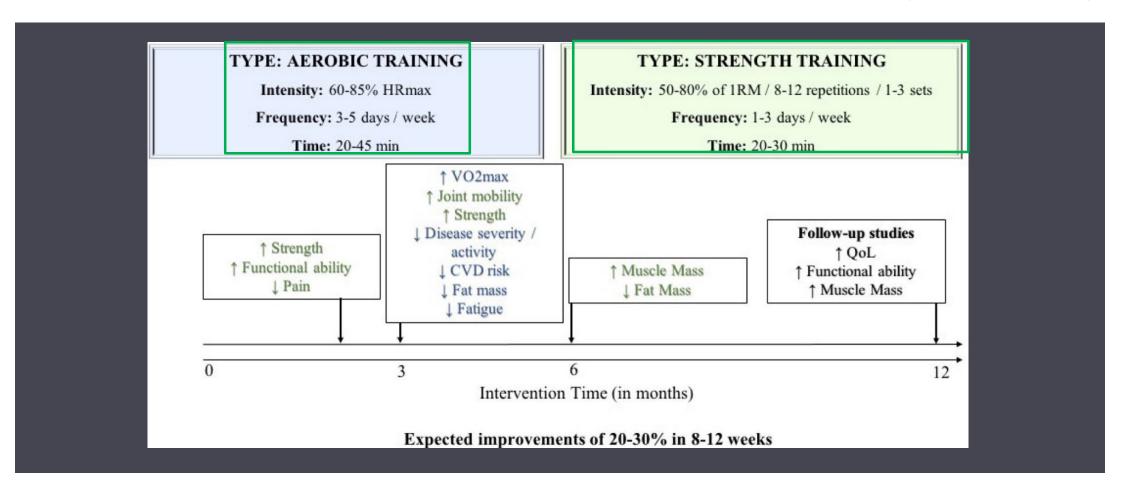


Finger pinch





Gross grip




Finger adduction



#### **EXERCISE PARAMETERS**

(Metsios et al., 2021)





#### BARRIERS & FACILITATORS TO EXERCISE

#### **Barriers:**

- Unpredictable nature of RA
- Pain
- Stiffness
- Reduced mobility
- Fatigue
- ↓ Confidence
- Fear of embarrassment

#### **Barriers cont:**

- Injury/exacerbation of symptoms
- Lack of professional guidance
- Inaccessible facilities
- Cost

#### **Facilitators:**

- Professional guidance,
- Social support
- Improved symptoms
- Overall enjoyment

## **TAKE-HOME MESSAGES:**





#### REFERENCES

- 1. Anne-Kathrin Rausch, O., et al. (2018). "2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis." Annals of the Rheumatic Diseases 77(9): 1251.
- 2. Baillet A, Vaillant M, Guinot M, Juvin R, Gaudin P. Efficacy of resistance exercises in rheumatoid arthritis: meta-analysis of randomized controlled trials. Rheumatology (Oxford). 2012;51(3):519-27.
- 3. Baillet A, Zeboulon N, Gossec L, Combescure C, Bodin LA, Juvin R, et al. Efficacy of cardiorespiratory aerobic exercise in rheumatoid arthritis: meta-analysis of randomized controlled trials. Arthritis Care Res (Hoboken). 2010;62(7):984-92.
- 4. Balchin, C., et al. (2022). "Acute effects of exercise on pain symptoms, clinical inflammatory markers and inflammatory cytokines in people with rheumatoid arthritis: a systematic literature review." Ther Adv Musculoskelet Dis 14: 1759720x221114104.
- 5. Bell, K., et al. (2022). "Barriers and facilitators to physical activity in people with an inflammatory joint disease: a mixed methods study." BMC Musculoskeletal Disorders 23(1): 897.
- 6. Boniface G, Gandhi V, Norris M, Williamson E, Kirtley S, O'Connell NE. A systematic review exploring the evidence reported to underpin exercise dose in clinical trials of rheumatoid arthritis. Rheumatology (Oxford). 2020;59(11):3147-57.
- 7. Bozzalla-Cassione, E., et al. (2022). "Insights Into the Concept of Rheumatoid Arthritis Flare." Front Med (Lausanne) 9: 852220.
- 8. Esther, W., et al. (2017). "Hand exercises for patients with rheumatoid arthritis: an extended follow-up of the SARAH randomised controlled trial." BMJ Open 7(4): e013121.
- 9. Heine, P. J., et al. (2012). "Development and delivery of an exercise intervention for rheumatoid arthritis: Strengthening and stretching for rheumatoid arthritis of the hand (SARAH) trial." Physiotherapy 98(2): 121-130.
- 10. Hu, H., et al. (2021). "The effect of physical exercise on rheumatoid arthritis: An overview of systematic reviews and meta-analysis."\_J Adv Nurs 77(2): 506-522.



#### REFERENCES

- 1. Hu, H., et al. (2021). "The effect of physical exercise on rheumatoid arthritis: An overview of systematic reviews and meta-analysis."\_J Adv Nurs 77(2): 506-522.
- 2. Hurkmans E, van der Giesen FJ, Vliet Vlieland TP, Schoones J, Van den Ende EC. Dynamic exercise programs (aerobic capacity and/or muscle strength training) in patients with rheumatoid arthritis. Cochrane Database Syst Rev. 2009;2009(4):Cd006853.
- 3. Jacquemin, C., et al. (2017). "Flares assessed weekly in patients with rheumatoid arthritis or axial spondyloarthritis and relationship with physical activity measured using a connected activity tracker: a 3-month study." RMD Open 3(1): e000434.
- 4. Josef SS, Robert BML, Sytske Anne B, Andreas K, Alexandre S, Daniel A, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Annals of the Rheumatic Diseases. 2023;82(1):3.
- 5. Katz, P., et al. (2020). "Benefits and promotion of physical activity in rheumatoid arthritis." Current Opinion in Rheumatology 32(3).
- 6. Lamb, S. E., et al. (2015). "Exercises to improve function of the rheumatoid hand (SARAH): a randomised controlled trial." The Lancet 385(9966): 421-429.
- 7. Li Z, Wang XQ. Clinical effect and biological mechanism of exercise for rheumatoid arthritis: A mini review. Front Immunol. 2022;13:1089621.
- 8. Metsios, G. S. and G. D. Kitas (2018). "Physical activity, exercise and rheumatoid arthritis: Effectiveness, mechanisms and implementation." Best Pract Res Clin Rheumatol 32(5): 669-682.
- 9. Metsios, G. S., et al. (2021). "Position Statement on Exercise Dosage in Rheumatic and Musculoskeletal Diseases: The Role of the IMPACT-RMD Toolkit." Mediterr J Rheumatol 32(4): 378-385.
- 10. Myasoedova, E., et al. (2016). "The role of rheumatoid arthritis (RA) flare and cumulative burden of RA severity in the risk of cardiovascular disease." Ann Rheum Dis **75(3)**: **560-565**.



#### REFERENCES

- 1. Siqueira, U. S., et al. (2017). "Effectiveness of Aquatic Exercises in Women With Rheumatoid Arthritis: A Randomized, Controlled, 16-Week Intervention-The HydRA Trial." Am J Phys Med Rehabil **96(3): 167**
  175.
- 2. Sobue Y, Kojima T, Ito H, Nishida K, Matsushita I, Kaneko Y, et al. Does exercise therapy improve patient-reported outcomes in rheumatoid arthritis? A systematic review and meta-analysis for the update of the 2020 JCR guidelines for the management of rheumatoid arthritis. Mod Rheumatol. 2022;32(1):96-104.
- 3. Wen Z, Chai Y. Effectiveness of resistance exercises in the treatment of rheumatoid arthritis: A meta-analysis. Medicine (Baltimore). 2021;100(13):e25019.
- 4. Ye H, Weng H, Xu Y, Wang L, Wang Q, Xu G. Effectiveness and safety of aerobic exercise for rheumatoid arthritis: a systematic review and meta-analysis of randomized controlled trials. BMC Sports Science, Medicine and Rehabilitation. 2022;14(1):17.